Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Nurs ; 29(8): S4-S10, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32324461

RESUMO

Replacing peripheral vascular catheters when clinically indicated rather than routinely has multiple benefits for patients and practitioners. Managing vascular catheters based on clinical indication provides early opportunities for intervention, or catheter removal or replacement. Where clinically indicated, peripheral vascular catheters can be used for a long time, and this is aided by decision-making tools such as the visual infusion phlebitis score and care bundles. Fewer cannulations result in less pain, better patient comfort and a lower risk of infection. For each cannulation avoided, about 20 minutes can be saved for other care activities. Replacing peripheral vascular catheters according to clinical indication can improve patient safety and optimise resource use.


Assuntos
Cateterismo Periférico/instrumentação , Remoção de Dispositivo/normas , Segurança do Paciente , Cateterismo Periférico/efeitos adversos , Humanos , Guias de Prática Clínica como Assunto , Fatores de Tempo
2.
Cell Signal ; 26(4): 748-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24407174

RESUMO

Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a multi-functional serine/threonine protein kinase that controls a range of cellular functions, including proliferation. The biological properties of CaMKII are regulated by multi-site phosphorylation and targeting via interactions with specific proteins. To investigate the role specific CaMKII phosphorylation sites play in controlling cell proliferation and cell cycle progression, we examined phosphorylation of CaMKII at two sites (T253 and T286) at various stages of the cell cycle, and also examined the effects of overexpression of wild-type (WT), T286D phosphomimic, T253D phosphomimic and T253V phosphonull forms of CaMKIIα in MDA-MB-231 breast cancer and SHSY5Y neuroblastoma cells on cellular proliferation and cell cycle progression. We demonstrate herein that whilst there is no change in total CaMKII expression or T286 phosphorylation throughout the cell cycle, a marked dephosphorylation of CaMKII at T253 occurs during the G2 and/or M phases. Additionally, we show by molecular inhibition, as well as pharmacological activation, that protein phosphatase 2A (PP2A) is the phosphatase responsible for this dephosphorylation. Furthermore, we show that inducible overexpression of WT, T286D and T253V forms of CaMKIIα in MDA-MB-231 and SHSY5Y cells increases cellular proliferation, with no alteration in cell cycle profiles. By contrast, overexpression of a T253D phosphomimic form of CaMKIIα significantly decreases proliferation, and cells accumulate in mitosis, specifically in metaphase. Taken together, these results strongly suggest that the dephosphorylation of CaMKII at T253 is involved in controlling the cell cycle, specifically the metaphase-anaphase transition.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Substituição de Aminoácidos , Anáfase , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metáfase , Mitose , Fosforilação , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
3.
Nat Med ; 19(2): 232-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23334847

RESUMO

Allergic airway inflammation is associated with activation of innate immune pathways by allergens. Acute exacerbations of asthma are commonly associated with rhinovirus infection. Here we show that, after exposure to house dust mite (HDM) or rhinovirus infection, the E3 ubiquitin ligase midline 1 (MID1) is upregulated in mouse bronchial epithelium. HDM regulates MID1 expression in a Toll-like receptor 4 (TLR4)- and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent manner. MID1 decreases protein phosphatase 2A (PP2A) activity through association with its catalytic subunit PP2Ac. siRNA-mediated knockdown of MID1 or pharmacological activation of PP2A using a nonphosphorylatable FTY720 analog in mice exposed to HDM reduces airway hyperreactivity and inflammation, including the expression of interleukin-25 (IL-25), IL-33 and CCL20, IL-5 and IL-13 release, nuclear factor (NF)κB activity, p38 mitogen-activated protein kinase (MAPK) phosphorylation, accumulation of eosinophils, T lymphocytes and myeloid dendritic cells, and the number of mucus-producing cells. MID1 inhibition also limited rhinovirus-induced exacerbation of allergic airway disease. We found that MID1 was upregulated in primary human bronchial epithelial cells upon HDM or rhinovirus exposure, and this correlated with TRAIL and CCL20 expression. Together, these findings identify a key role of MID1 in allergic airway inflammation and links innate immune pathway activation to the development and exacerbation of asthma.


Assuntos
Alérgenos/imunologia , Asma/etiologia , Proteínas dos Microtúbulos/fisiologia , Proteínas Nucleares/fisiologia , Infecções por Picornaviridae/complicações , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas/fisiologia , Rhinovirus , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Cell Signal ; 22(12): 1882-90, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20688157

RESUMO

Asthma is characterised by antigen-mediated mast cell degranulation resulting in secretion of inflammatory mediators. Protein phosphatase 2A (PP2A) is a serine/threonine protein phosphatase composed of a catalytic (PP2A-C) subunit together with a core scaffold (PP2A-A) subunit and a variable, regulatory (PP2A-B) subunit. Previous studies utilising pharmacological inhibition of protein phosphatases have suggested a positive regulatory role for PP2A in mast cell degranulation. In support of this we find that a high okadaic acid concentration (1µM) inhibits mast cell degranulation. Strikingly, we now show that a low concentration of okadaic acid (0.1µM) has the opposite effect, resulting in enhanced degranulation. Selective downregulation of the PP2A-Cα subunit by short hairpin RNA also enhanced degranulation of RBL-2H3 mast cells, suggesting that the primary role of PP2A is to negatively regulate degranulation. PP2A-B subunits are responsible for substrate specificity, and carboxymethylation of the PP2A-C subunit alters B subunit binding. We show here that carboxymethylation of PP2A-C is dynamically altered during degranulation and inhibition of methylation decreases degranulation. Moreover downregulation of the PP2A-Bα subunit resulted in decreased MK2 phosphorylation and degranulation, whilst downregulation of the PP2A-B'δ subunit enhanced p38 MAPK phosphorylation and degranulation. Taken together these data show that PP2A is both a positive and negative regulator of mast cell degranulation, and this differential role is regulated by carboxymethylation and specific PP2A-B subunit binding.


Assuntos
Degranulação Celular/fisiologia , Mastócitos/fisiologia , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Metilação , Modelos Biológicos , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Cancer Res ; 70(13): 5438-47, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20551067

RESUMO

Oncogenic mutations of the receptor tyrosine kinase c-KIT play an important role in the pathogenesis of gastrointestinal stromal tumors, systemic mastocytosis, and some acute myeloid leukemias (AML). Although juxtamembrane mutations commonly detected in gastrointestinal stromal tumor are sensitive to tyrosine kinase inhibitors, the kinase domain mutations frequently encountered in systemic mastocytosis and AML confer resistance and are largely unresponsive to targeted inhibition by the existing agent imatinib. In this study, we show that myeloid cells expressing activated c-KIT mutants that are imatinib sensitive (V560G) or imatinib resistant (D816V) can inhibit the tumor suppressor activity of protein phosphatase 2A (PP2A). This effect was associated with the reduced expression of PP2A structural (A) and regulatory subunits (B55alpha, B56alpha, B56gamma, and B56delta). Overexpression of PP2A-Aalpha in D816V c-KIT cells induced apoptosis and inhibited proliferation. In addition, pharmacologic activation of PP2A by FTY720 reduced proliferation, inhibited clonogenic potential, and induced apoptosis of mutant c-KIT(+) cells, while having no effect on wild-type c-KIT cells or empty vector controls. FTY720 treatment caused the dephosphorylation of the D816V c-KIT receptor and its downstream signaling targets pAkt, pSTAT5, and pERK1/2. Additionally, in vivo administration of FTY720 delayed the growth of V560G and D816V c-KIT tumors, inhibited splenic and bone marrow infiltration, and prolonged survival. Our findings show that PP2A inhibition is essential for c-KIT-mediated tumorigenesis, and that reactivating PP2A may offer an attractive strategy to treat drug-resistant c-KIT(+) cancers.


Assuntos
Leucemia Mieloide Aguda/enzimologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Cloridrato de Fingolimode , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos DBA , Fosforilação , Propilenoglicóis/farmacologia , Proteína Fosfatase 2/biossíntese , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...